CARLSBAD DESALINATION PROJECT THROUGH-SCREEN VELOCITY CALCULATION NOVEMBER 29, 2016

Background and Objective

Background

- Conceptual design of CDP is based on OPA requirements:
 - 1-mm mesh
 - 0.5 ft/sec through-screen velocity
- During Nov 2 meeting, RWQCB asked for more info on how the velocity calculations were made

Objective

 Walk through the through-screen velocity calculations for the Carlsbad Desalination Plant

Proposed Intake Configuration

© POSEIDON WATER 2016

Screening Area

© POSEIDON WATER 2016

Through-Screen Velocity Calculation

Calculation assumes worst-case scenario:

- Only 6 screens in operation (normal operation is with 7)
- 15% fouling with debris
- Mean Lower Low Water level = -2.29 ft
- Q = AV or V = Q/A

Through-Screen Velocity Calculation

(Depth LWL 17.71 ft) X (length 11.48 ft) = 203.36 sq ft (length 11.48 ft) X (channel width 13.12 ft) = 150.69 sq ft

Description	Value	Unit
Total Flow Rate – (US gallons not UK gallons)	299	MGD
Total Flow Rate	463	CFS
HWL	3.04	ft
LWL (MLLW)	-2.29	ft
Finished Floor	-20	ft
Depth HWL	23.04	ft
Depth LWL = LWL – Finished Floor = -2.29 – (-20) =	17.71	ft
Channel Width	4.00	m
Channel Width	13.12	ft
Length	3.50	m
Length	11.48	ft
Surface Area Each Side Screen (Single Plane) HWL	264.57	ft ²
Surface Area Each Side Screen (Single Plane) LWL	203.36	ft ²
Surface Area Bottom Screen (Single Plane)	150.69	ft ²
Total Screen Surface Area (Single Plane) HWL	679.83	ft ²
Total Screen Surface Area (Single Plane) LWL	557.42	ft ²
No. of Screens	6	-
Effective Open Area	0.37	-
Open Area Each Screen HWL	253.80	ft ²
Open Area Each Screen LWL	208.10	ft ²
Clean Velocity LWL = 463 CFS / 1248.6 sq ft =	0.37	ft/s
15% Fouling Velocity LWL	0.44	ft/s

Total Surface Area per Screen = 557.42 sq ft

Total Open Area per Screen = 557.42 sq ft x 0.37 = 208.10 sq ft

Total Open Area per 6 Screens = 208.10 x 6 = 1248.6 sq ft

© POSEIDON WATER 2016

Through-Screen Velocity Calculation

Through-Screen Velocity Through-Screen Velocity for Clean Screens for 15% Fouled Screens V = Q/AV = Q/A**6** Screens 463 cu ft/sec 463 cu ft/sec V -V =(1248.6 sq ft)(0.85) 1248.6 sq ft V = 0.37 ft/sec V = 0.44 ft/sec **Through-Screen Velocity Through-Screen Velocity** for 15% Fouled Screens for Clean Screens V = Q/AV = Q/A7 Screens 463 cu ft/sec 463 cu ft/sec V =V =(1456.7 sq ft)(0.85) 1456.7 sq ft V = 0.32 ft/sec $V = 0.37 \, \text{ft/sec}$ © POSEIDON WATER 2016